Page 1 of 1

Primarily address and location related data

Posted: Mon Dec 23, 2024 4:44 am
by phonedata
In this blog we’re using a dataset of UK sold property prices from 1995 through to early 2018 (1). This dataset comprises just over 23 million property sales in the UK. There are only a handful of variables provided in the dataset, . There are a couple of fields that identify details about the property type, and finally a sale date and the price paid.

Looking across the whole of the data we would find that the average house price is just under £184,000. We could construct an expression to compare each house price to this overall cyprus mobile number example value, but that would be limited in particular scenarios as the house price varies massively across different areas of the UK, as shown in the cube below (2).

CubeLookups: Comparing to an average

Comparing the value of a house price sale against the overall average will mean that all house prices in these top categories will be considered to be above average, and conversely all of those in the lowest districts to be below average. A more instructive measure would be to compare the price of this house sale against the average across the whole of its relevant district. For instance, a house that sold for £500,000 in Camden would be considered to be £87,864.93 below the average house price for Camden properties.

This type of calculation can be performed by using the CubeLookup() expression function. To use it, we add the cube to an expression. A tab is created at the bottom of the expression window where the particular value to be looked up can be specified. In the screenshot below we’ve specified that we’re interested in the Mean(Price) statistic.